Collections — Part |

Nico Ludwig (@ersatzteilchen)

* Collections — Part |
- Algorithms

* Algorithmic Complexity
* Analysis of Algorithms’ Costs
* Analysis of Sorting Algorithms
» Selection sort and Insertion sort
* Merge sort and Quick sort
- Divide and Conquer

- Complexity and O-Notation

* Sources:
- Julie Zenlisky, Stanford Course CS 106B "Programming Abstractions"

https://www.toptal.com/developers/sorting-algorithms

Yes, my slides are heavy.

| do so, because | want people to go through the slides at their own pace w/o having to watch
an accompanying video.

On each slide you'll find the crucial information. In the notes to each slide you'll find more
details and related information, which would be part of the talk | gave.

Have fun!

The topics collections and algorithms are highly coupled in programming altogether.
- Collections and algorithms are no difficult topics by themselves, but they are difficult to giv: tructure to learn them.
- This is true because:
- Different platforms use different approaches/technologies and different terminology and categorization expressing collections and algorithms.

« Different people of different shops have different understanding of the reality they cast into collection types. — All of these abstractions are correct!
« ButI'll try to do my best here! :) The idea is to make the audience able to ask questions like "Here in C++ | need something like Java's Set!".

« The aim is to learn how certain collection types work from a 20K miles perspective, not a specific collections API!

Collections are basically, well, collections of objects. The algorithms we'll analyze operate on collections of objects.
- The following algorithms will use the simplest collection type: collections following the array-concept (hence, we call them "arrays").

- Even novice programmers know how to use arrays.
- Every language supports arrays somehow.

In this lecture we'll discuss algorithms, which form the base for the much longer discussion of collections.

We begin with measuring the efforts required to solve a problem (not necessarily an algorithm). These efforts could be:
- Memory or space

- Time

* Example: How to count the amount of cars on the parking lot?
- We could just count them.
- We could select an area, count the cars and multiply by nAreas (i.e. the count of areas). This approach is called "sampling".

- Following questions are relevant: How long will it take? What is required to perform the algorithm? How accurate is the result?

* In the realm of collections we analyze the efforts of the available operations on collections.
- These operations are algorithms to solve problems like finding or accessing elements, inserting, appending and prepending elements.

* Knowing the efforts of specific operations on specific collections allows picking the most efficient approach for a task.
- This is an essential skill for programmers, when we talk about programming tasks!

- But for now we have to understand how algorithms are measured in practice.

* How can we determine the required efforts?
- We could measure the time with a stop watch. Pro: simple; contra: unfair: may result differently on different platforms/configurations
- We could perform a mathematical analysis. Pro: results are repeatable and can be extrapolated; contra: it can be tricky

« In this course we're going to talk about the mathematical analysis of algorithms.
- We use following strategy to measure algorithms: we'll give each statement (activity of a task) to be executed a "cost" of 1 credit (1c).

public static double Sum(double lhs, double rhs) {
return |hs + rhs; // 1 credit
}// => Overall result: 1 credit

- Sum() is a simple case, in which we can count the statements: we have one statement, which makes Sum() worth one credit.

public static int GetMax(int[] elements) {
int max = 0; // 1 credit
for (inti = 0; i < elements.Length; ++i) { // 1 credit + elements.Length credits + elements.Length credits
if (max < elements]i]) { // elements.Length credits
max = elementsi]; / ? credits
}

}
}

- A somewhat more complex case is an algorithm like GetMax() that needs digesting an unknown amount of input elements.

- In GetMax()'s case we also have statements that are executed conditionally. How can we deal with that?

Algorithmic Complexity

int max = 0; // 1 credit
for (inti=0; i < elements.Length; ++i) { // 1 credit + elements.Length credits + elements.Length credits
if (max < elementsi]) { // elements.Length credits
max = elementsi]; // ? credits
}

}
* In computer science (cs) we have a special term to express how "costly" an algorithm is: the algorithmic complexity O.
- We're going to introduce the "big-O notation". It describes how the execution of an algorithm depends on its input.
- => 0 does neither directly express time nor memory costs!

* In the algorithm shown above, we can sum up the credits (c) for n elements (n = elements.Length) like so:
- (1) 1c for one statement + 1c + 2 x nc (loop header) + nc (comparison in the loop) + mc (conditionally executed code in the loop):

« This makes this sum 2¢ + 3 x nc + mc.

- (2) The idea of complexity mandates us to reduce the sum to the largest sub sums depending on the count of elements (n):

* This makes a reduced sum of 3 x nc. (OK, the term mc is somewhat interesting, but it'll not be larger than nc and can be removed.)
- (3) Finally the idea of complexity mandates us to elide all constant factors:
« This makes a sum of nc and this unveils GetMax()'s complexity to be O(n).
- The complexity of O(n) is said to be linear, because the complexity evolves/depends linearly with/on the count of elements (n):

« Le. the algorithm will take twice as long for an array of 100 elements as for an array of 50 elements. Pretty logical for GetMax(), isn't it? 7

* We'll use the so called "Landau symbol" O (for
German "Ordnung") as the symbol for the
algorithmic complexity (complexity). Virtually the
Landau symbol O expresses only the upper bound
of algorithmic costs (other symbols exist to express
other bounds). But in practice only the symbol O is
used.

int max = 0; // 1 credit
for (inti = 0; i < elements.Length; ++i) { / 1 credit + elements.Length credits + elements.Length credits
if (max < elements]i]) { // elements.Length credits
max = elementsi]; // ? credits
}

}
* Some facts on how complexity is "calculated" and how the big-O notation is applied:

- Only the biggest term (that one with the most frequently use of n) counts for O, coefficients etc. are eliminated.
- O doesn't take noisy other statements into consideration, like initialization of variables or the cost of comparison etc.

- Here some examples:
7n+4 - O(n) %n2+n > 0(n?)

13n > O(n) n+2" » 0(2")
- (The expression of complexity is not so much "correct" mathematics.)

» |f an operation is completely independent from the (count of) elements it is said to have constant complexity.
‘ int max = 0; // 1 credit -> independent of elements }— 0o(1)

- An algorithm having constant complexity is the most performant algorithm we can have basically.
- (The absolutely most performant algorithm is the empty algorithm that has a complexity of O(0).)

Analyzing the Factorial Function — Recurrence Relations

* To understand how the "calculation" of complexity works, we have to discuss more complicated algorithms.

* Next we analyze recursive algorithms.
- It is more difficult to analyze recursive algorithms, because for recursive problems many steps are done in advance.

- Recursive algorithms are often used in heuristics, where experiences from other problems contribute in solving the current problem.

« When many steps can be done in advance, also many tries and errors can be done in advance, then errors can be eliminated from the effective solution.

» Let's review the recursive implementation of the factorial function (Factorial()):

/I No check of input (n >= 0).

= 1; n=0 neN publicrsettautisi(notlzzix(;t;)rial(intn){
n((n—1)!); n>0 21

: n * Factorial(n - 1);

}
» The first step is to express the time needed to process n elements. We use the symbol T(n) to express this time.
- Finally we get a new recurrence relation from n!'s definition to formulate the required time to process n elements:

T(n):{ n=0

1;
1+T(n—1); n>0
- (Once again: O does not directly express time costs, but T(n) does! We'll finally come to O, stay tuned!) 9

The shown code for Factorial() is not only recursive,
it is also following the functional paradigm (we
used ?: instead of if/else statements.)
Recurrence relation: in German often (imprecisely)
"Differenzengleichung" or "Rekursionsgleichung”.
The recurrence relation of T looks almost exactly
like the code of Factorial(), but this is not the case
for all types of algorithms.
The elements in T:
* Base case: the cost of 1 is a constant 1c.
« Common case:
e 1c: for evaluating n and the multiplication with T,
 plus the time it takes to calculate T(n - 1).

Analyzing the Factorial Function — Recurrence Relations'
closed Form

T (n):[l; n=0

|1+T(n-1); n>0
* To solve this expression we have to transform T(n) into a closed form, i.e. eliminating all T(...)s from the right side of =.
- We have to start with the non-base case and apply repeated substitution.

T(n)=1+T(n—1]
formulate repeated expands
T(n—l):{l; n=0

1+T(n—2)); n>0

l—try formulating a closed form (T(n) is still in)

T(n—1)=1+1+T(n-2)

generalize the pattern of the want-to-be closed form (T(n) is still in)

T(n)=1+1+-----+T (n—i) 10

The development of the steps nicely show, that
recursion means to pass a smaller version of the
problem T(n - 2), which is smaller than the received
T(n -1).
In this example we can recognize that mathematical
induction can be expressed with expanding
recursions.
A closed form of a function is basically expressing a
function that has a deterministic count of steps
independent from the input.
The elements in T:
» Base case: the cost of 1 is a constant 1c.
« Common case:
* 1c: for evaluating n and the multiplication with T,
* plus the time it takes to calculate T(n - 1).

10

Analyzing the Factorial Function — Algorithmic Complexity

ttttt

- (The factorial function doesn't have a known closed form yet and it is tricky to find it for "its" T(n)!)

- Each recursion contributes a 1 to the sum, until the base case (n = 1) is reached.

* Also w/o a closed form we can solve the recurrence relation by solving the "equation" for the base case (n = 0):
- When we set i = n all expands will be solved and T(n) vanishes from the right side of =!

T(n)=1+1+----- +T (n—n)

ttttt

results in n hits the base case (0!/T(0)) and results in 1

T(n)=n + 1

- To find the resulting complexity of the solved recurrence relation, we've to find the biggest term and remove the other "noise":
for T(n)=n+1 - O(n)

- => Factorial() has a linear complexity! Processing 4! elements takes twice as long as processing 2!.

11

* T(n) as n + 1 just means n multiplications plus the
base case.

* As a matter of fact nobody found the closed
form for n! yet. There exist some asymptotic
approaches, but no closed forms.

* Mathematical functions can basically only have
one of two forms: (1) closed form or (2)
recursion

* We could implement n! (i.e. really program in a
programming language) using a table or map to
cache results of past calculations! — But this is
just an optimization.

11

Analysis of Sorting Algorithms — Selection sort

* The most versatile algorithms to examine are sorting algorithms.
- In this course you'll not need writing any sorting algorithms! You can find them in the APIs of the platform you use!

- We want you to understand how to analyze the strategy of a couple of sorting algorithms.

* We start discussing "selection sort" (also called "min sort", "max sort" or "exchange sort"):

public static void SelectionSort(int[] elements) {
for (inti = 0; i < elements.Length - 1; ++i) {
int minindex = i;
for (intj =i+ 1; j < elements.Length; ++j) {
if (elements[j] < elements[minindex]) {
minindex = j;
}

Swap(ref elementsi], ref elements[minindex]);

}
- (The details of the code (Swap()) don't matter for our examinations. Only the approach and the performance is of interest.)

- Selection sort's approach is to find (hence the name "select") the smallest elements and exchange it with a front element:
« It performs many comparisons, esp. on the first iteration all elements (outer loop) must be compared to find the very smallest one.
- Also mind, that the many of comparisons can be seen, as it sits in the innermost section (loop!).
- Further mind, that we start the inner loop at elements.length - 1, because the right hand side index is just i.
« It performs few moves/swaps. 12
« ltis slow in the beginning (many elements to compare), but fast at the end (less comparisons or fewer elements to lookup).

* We iterate the whole collection to find the smallest,
then we iterate the rest (n - 1) until we find the
smallest and exchange it with the 2™ element and
so forth.

* We're not going to analyze "bubble sort"!

e Approach: compare all neighbor elements and
swap them in multiple iterations until all elements
are sorted. The smaller (or larger) elements
"bubble” to the top.

* Selection sort is similarly inefficient but simpler to
understand, because it sorts like humans would
sort manually.

12

Analysis of Selection Sort

* We can concentrate on the comparisons, because selection sort does many of them. We won't analyze the moves/swaps.
- The inner loop compares all elements: 1% iteration: n - 1 comparisons (costs (n - 1)c), 2™ iteration: n - 2 comparisons (costs (n - 2)c).

- Now we are looking at the sum of comparisons, this makes following recurrence relation:
T(n)=n—1+n—2+--+2+1
- ==

1iter 2"iter

- We need to sum the efforts for the elements n - 1 to 1. How can we do that?

* The idea is to add the sum to itself (1) (the sum is called S) and take the half of it (2). This is called the gaussian sum formula.
- (1) The reverse order of the summation (the sum operation is commutative) shows how the sub sums cancel themselves out.

n-1 + n-2 + - + 2 + 1

+ 1 + 2 + - + n-2 + n-1
Sy = n + n + -+ 4+ n + n
Swy = n(n—1)

- (2) To get the sum we have to half the result of (1):

S _ 2 2

m-1)_n(n=1) _n* n n° n 2
T(n)=——=———=——-||for ——— = O(n
(n)==3 2 2 2 2 2 ()

- => Selection sort has quadratic complexity! (The gaussian sum formula is the closed form of the sum of natural numbers!) 13

- Here we analyzed the average complexity of selection sort. This is the complexity for all possible inputs.

* We're somewhat off the "official" gaussian sum
formula (n(n+1)/2) because we startedatn-1. —
The inner loop is executed for (elements.Length - 1)
times, the outer loop for elements.Length times! The
original gaussian sum formula officially looks like

this:
n + n-1 + - + 2 + 1
+ 1 + 2 + -+ 4+ n—1 + n
Sy = n+¥l + n+l + -+ n+l + n+l

n(n+1)

9p)
=
I

n(n+1)
2

Analysis of Insertion sort

* The next sorting algorithm we'll analyze is "insertion sort":
public static void InsertionSort(int[] elements) {
for (inti = 1;i < elements.Length; ++i) {
int current = elementsi];

intj=i-1;
for (; j >= 0 && elements][j] > current; —j) {
elements[j + 1] = elements[j];

elements][j + 1] = current;

}

* Insertion sort's approach:
- Think: deck of cards. The first card is trivially sorted, we select right cards and move it to the left and insert it at the sorted position

- The first element is trivially sorted: it's the only element, which was processed yet and is already on the correct index.
- Pick the next element and move it to as many left positions until it passed a greater element and found a smaller one: insert there

* The left side is kept sorted this way.
- Repeat these pick/insert operations until the collection is through.

* Let's look into the algorithm and guess its complexity:
- The 0™ element is the first element that is sorted. Iterate over the remaining elements, the "leftmost" elements are always sorted.

- An element to be inserted will be put to the left until it is greater or equal than the left element. This is done in the inner loop. 14

- Esp. the hint that we have an inner loop leads us to guessing that the complexity of insertion sort in also O(n2) (w/o proof)!

* In opposite to selection sort, we pick an element
and take it with us until we find the first largest one,
l.e. the comparison is done while we move. In
selection sort we make the exact selection of the
smallest element first.

* Nested loops are a marker for quadratic complexity.

14

Insertion sort:

- ltis fast in the beginning of sorting, because few elements need to be moved.

- Slows down at the end of sorting, because potentially many moves must be performed.
- The complexity is in the sum of moves/swaps, it performs only few comparisons.

- The inner loop will compare all elements on the left (mind: those are already sorted).

- The first element: one comparison, the second element: two comparisons ... for the last: element n - 1 comparisons.

- Best case: all elements are sorted! — O(n), worst case: all elements are sorted in inverted order! — O(n?), average case: O(n?)

* Selection sort (and bubble sort):
- ltis slow in the beginning of sorting, because many elements need to be compared to select the smallest element.
- Gets faster at the end of the sorting, because few comparisons must be performed.
- The complexity is in the sum of comparisons, it performs only few moves/swaps.
- Best case: O(n?), worst case: O(n?), average case: O(n?) (Ouch!) — The performance is independent from the input!

* To choose an algorithm take into consideration, whether (1) elements are "cheap" to move/copy or (2) "cheap” to compare.

- Pointers are cheap to copy: selection sort; instances of a "heavy" UDT are cheap to compare: insertion sort. 15

Features of selection sort and insertion sort:
- Contra: They have quadratic performance behavior — O(n?).

- Pro: They are easy to code.

* Another way to solve sorting problems is by dividing the to-be-operated input into parts to be sorted individually.
- E.g. if the input is split into two halves sorting will only take the half time each!
- This approach can be taken further, when splitting the halves into quarters, splitting those into eighths a.s.f.
- Finally we end in a recursive approach, recursively splitting the input to be sorted.

- Recursion means that a part of the problem is delegated to the same algorithm.
* This recursive approach to solve sub-problems of the whole problem is called "divide and conguer”.

* Now we're going to discuss two sorting algorithms applying divide and conquer: "merge sort" and "quick sort".

16

* Once again: The code of selection sort and insertion
sort each has a hint for quadratic behavior: nested
loops.

16

public static void MergeSort(int[] elements) {
if (1 < elements.Length) {
int n1 = elements.Length/2;
int n2 = elements.Length - n1;
int[] left = Copy(elements, 0, n1);
int[] right = Copy(elements, n1, n2);
MergeSort(left);
MergeSort(right);
Merge(elements, left, right);

}
* Merge sort is a typical divide and conquer algorithm.
- Put simple: It splits the input in half and each half will be sorted. This step is an "easy split" of the input, as the split is a no-brainer!
* Aninput list of one element is the base case of the recursion. => The base case is hit, when the count of passed elements is one (a trivially sorted array).
- Then in one of these sorted halves the top element must be smallest element of the whole input.
- Only the top elements need to be compared and merged into the result. The merge step is O(n) (n comparisons), but still a "hard join".

« Actually, the code of Merge() won't be discussed (esp. it's a nasty and long pice of code for arrays).
- However, keep in mind, that it is a linear operation: just an element-by-element comparison of equally sized halves is done! 17

17

Analysis of Merge sort — Preliminary Thoughts

public static void MergeSort(int[] elements) {
if (1 < elements.Length) {
int n1 = elements.Length/2;
int n2 = elements.Length - n1;
O() int[] left = Copy(elements, 0, n1);
n int[] right = Copy(elements, n1, n2);

0(1)(because independent of elements) =

" . nyy, MergeSori(left); . .
2 X complexityOf (MergeSort(E)) — MergeSortErigrzt); —half the input — easy split
0o(n) Merge(elements, left, right); —merge the halves — hard join
}

}

* Let's start analyzing MergeSort():
- (The details of the code (Merge()/Copy()) don't matter for our examinations. Only the approach and the performance is of interest.)
- In sum we've a negligible O(1) operation, two O(n) operations and there is the cost of 2 x complexityOf(MergeSort(n/2)) in the middle.
- It leads to following recurrence relation:

T(n)=1+2n+2T(g) 5> T(n)=n+2 T(%)

- (Yes, there's a trick: We could elide 1 + 2n to n, because of the so called "master theorem for recurrence relations of recursions".)

* But we want to come to a closed form and therefor we need to calculate the sum.
- To get this recursive algorithm's complexity we choose a new approach: we're going to make a graphical analysis using a tred®

* Why is Merge()'s complexity O(n) and not O(n/2)? It
IS because each comparison must be done against
the effective result (which is n elements), while the
elements of each half are put into the result.

* The recursion makes the sorting actually invisible, it
just compares and sets one-to-two-element-arrays
in the base case in the Merge()-step.

Analysis of Merge sort — let's do it with a Tree

e MergeSort (n) nwork)

|MergeSort (%) MergeSort (%)I %+§

k levels < g/‘ 7\! > each level row ,,carries“n

|MergeSort(g) MergeSort(%) MergeSort(g) MergeSort(%)|——4%

_ e o o),

» So each level contributes n and we've k levels. It leads to following count of elements per MergeSort()-call for the k" level:
* The last level will hit the base case when the amount of elements passed to MergeSort() is 1, we have to solve this:
- (The base case is 1 element, which is trivially sorted.)
1=% = p=2" = k=log,n
* Then we have the efforts of n elements per level multiplied by k levels, which solves the recurrence relation:
T (n)=(n per level)-(log, n levels)=n-log,n
* Finally we found the complexity of merge sort:
for (n per level)-(log,n levels) & n-log,n » O(nlogn)

19
- => MergeSort() has a linearithmic complexity!

* The question we want to answer here: how many
levels do we have to step down, until the base case
is hit?

* Actually, the n in the recurrence relation T(n) = n +
2T(n/2) dissolved in the analysis as well, because it
IS just also halved, quartered etc. during the
recursive steps.

* The word "linearithmic" is a portmanteau of the
words "linear" and "logarithmic".

19

public static void QuickSort(int[] elements, int start, int stop) {
if (stop > start) {
int pivotindex = Partition(elements, start, stop);
QuickSort(elements, start, pivotindex - 1);
QuickSort(elements, pivotindex + 1, stop);

}

* Quick sort is another divide and conquer algorithm and it carries a good marketing name :).
- It splits the input into a lower half (containing smaller elements) and into a higher half (containing larger elements).

« This splitting is not so simple like that for merge sort, where just the half of the input elements was taken. Quick sort's splitting is called "partitioning".
« For the partitioning it is required to find a middle element telling the lower from the higher half. This element is called the pivot element.
« However, doing the partitioning and finding the pivot element is the tricky part. What we have here is a "hard split".

- Then each half will be sorted recursively.
« The base case is hit when the halves cross. Then all elements left from the pivot element are greater than those right from the pivot element.
- Concatenate the sorted halves.

« Concatenation is simpler than merge sort's merging. This step is the "easy join", of the sorted halves (e.g. half 0 — 4 concatenated with half 7 — 13).
« The logical concatenation step is done in-place. i.e. in the passed array. (No new collection will be created.

- The spilt and join is both done in Partition().

20

Analysis of Quick sort — Partitioning and the pivot Element

* The first and also the critical step is the partition step. It is the "hard split".
- It contains finding the pivot element, which is a "middle" element and putting smaller/larger elements into the respective halves.

- The best case is hit, if the pivot element is the median of all of the input values.

* Finding the pivot element.
- The problem: where to find the best pivot element in an unsorted collection?

- Astrategy: iterate the whole input (!) to find the median in the input.

- Asimple strategy: just pick the first element! — We know that it must be somewhere in the range (but is not necessarily the median).

- (Other strategies: pick the middle, or the last or a random pivot element.)

* Finding the pivot element is the tricky part, but it has no complexity worse than O(n)!

- For quick sort the tricky part is the "hard split" and for merge sort it was the "hard join", but both only contribute O(n)!

* Let's go analyzing quick sort!

21

* The difference to merge sort is, that the pivot is an
explicitly chosen element, of which we know, on
which side "the only larger" and the only smaller
ones will be put on, then concatenating on the pivot
IS trivial.

21

* Assumption: a 50/50 split (the even split). This is the theoretical ideal, where the pivot element is the median.

- We have following recurrence relation (see merge sort) that leads to linearithmic complexity:

O (n) —{int pivotindex = Partition(elements, start, stop); () (n)
" . nyy, __I [QuickSort(elements, start, pivotindex - 1); T(n)=n+2T (= = Ol(nlogn
ZO(QuwkSort(2)) QuickSort(elements, pivotindex + 1, stop); 2 (&)

* Assumption: a 10/90 split (not so good split) to be analyzed with a tree:

n e 9 : — - -
1o Onone side, 9 oo the other side QuickSort n 0) QuickSort (9 1 0)

1 n

10 10 100

100

n . 9 n . . n . . n . n
— of — on one side, m of 9 10" the other side —IQUICkSort(100) QuickSort(9——) QuickSort(9 100) QuickSort (81)|

e o o
—

(k for the level) ——

- The base case (the halves meet when |stop - start| = 1) makes:

k

QuickSort (n (%))

k k
1:n(19—0) = n:(%) = k=log(m)n = kz(%)-logzn = k=c-log,n
- Which yields this complexity: ’

for (n per level)-(c-log,n levels) & c-n-log,n = still O(nlogn)

- Inthe end a 10/90 split (not so good split) still yields the rather good complexity of O(nlogn).

22

22

* The worst case is a 1/n-1 split. Here the pivot element is the smallest element and the input is already sorted.
- The complexity of this worst case can be shown with a tree as well:

~
QuickSort(1) QuickSort(n—1)
< QuickSort (1) QuickSort (n—2)
QuickSort (1) QuickSort(n—3)
_ hits the base case

- The worst case yields quadratic complexity:

for (n per level)-(n levels) » n-n » O(n’

- The effect is that we have many partitioning steps but sorting never takes place.
- On each level the list to be sorted is just reduced by one element.

* Combinations of selecting an extreme pivot element and having an already sorted input make the worse case here!

« Virtually there is no ideal strategy to find a suitable pivot element to avoid the worst case. 23

Decide which Sorting Algorithm to choose

* Sorting is a very important operation in computing, because it allows us
- to quickly find elements in input, finding an element in sorted input is called binary search, binary search is a O(logn) operation,

- to find duplicates in input and
- to find extremes in input.

* What should we know about a sorting algorithm:
- The input: probability to hit the best case, worst case, average case, already sorted ascending or descending or partially sorted?
- The count of operations:

* moves/swaps (we have many moves for insertion sort)

* comparisons (we have many comparisons for selection sort)
* E.g. comparing strings is often mored expensive than comparing ints. Moving pointers is less expensive than moving values.

- Is the algorithm stable? |.e. remain the elements in their relative order after sorting?

- Memory consumption.

* Merge sort occupies more memory, selection sort, insertion sort and quick sort work in place: they operate on the same array to sort.

- How simple is it to code the algorithm?

» There exists no general-purpose (i.e. comparison-based) sort algorithm better than O(nlogn). 24

- But for special inputs sorting algorithms can behave better!

* Comparison:

» Selection sort: always — O(n?).

 Insertion sort: best case (input is sorted) — O(n) (i.e. better
than divide-and-conquer-based sorting), other cases — O(n?)

* Merge sort: always — O(nlogn) (i.e. better than quick sort in
the average case)

* Quick sort: worst case (input is sorted, pivot is smallest or
largest element) — O(n?), other cases — O(nlogn)

« Stable order sorting is esp. important for non-primitive type input
collections, because non-primitive types have an identity. - In
case they move their relative positions in the input, depending
algorithms can break. For primitive types, the stability of sorting
doesn't matter, we cannot tell two occasions of the int 42 in an
array, if they are swapped, however, it won't influence any
dependent algorithms. Some libraries, e.g. Arrays.sort() in some
Java versions, use quick sort for primitive types, which is
unstable, but merge sort for non-primitive types, because it is
stable.

* A sort algorithm, that needs to create a new collection is usually
significantly more expensive for primitive-type input collections,
than for non-primitive type ones. Mind that doubling an int-array
means to requires two time the input memory to operate! - For an
array only holding references to non-primitive types, the doubling-
requirement is not so much of an impact.

O(1): constant complexity

O(logn): logarithmic complexity
- The quadratic count of elements will just double the "cost".

O(n): linear complexity

- The algorithm's "cost" depends linearly from the input.

- Example: Finding an element in an unsorted C++ array.
50 elements — 3.2s (worst), 100 elements — 6.4s (worst)

O(nlogn): linearithmic (portmanteau of linear and logarithmic) complexity.

- Example: Quick sort's average complexity.

The algorithm's "cost" is independent from the input.

Example: Accessing an element in a random access collection like a C++ array.

Example: Finding an element in a sorted C++ array with binary search. Array length 10 — 3s, array length 100 — 6s

f(x)=xlogx has a very slowly growing curve, it grows a little bit more than linear.

14+

12

10

O(nlogn)

25

O(n?): quadratic complexity
~ Double input — quadruple time, half input — quarter of time

- Example: insertion sort. 50 elements — 2.4s, 100 elements — 9.6s

O(c") (typically O(2")): exponential complexity
- Towers of Hanoi (O(2")): Moving a tower of eleven discs will take twice as long as for ten discs (factor of two for each additional disc).

- Examples: Towers of Hanoi, the Traveling Salesperson Problem (TSP)

Constant, logarithmic, linear and linearithmic complexity are
acceptable "costs" for most cases in the wild.

uadratic and exponential complexity are typicall
unacceptable "costs" for most cases in the wild.
= In other words: Algorithms "worse" than O(nlogn) are typicall
unacceptable for industry quality code!

26

public class List {

public static int GetMax(int[] elements) { / GetMax() as static method public int GetMax() { / GetMax() as fictive method
int max = 0; /I operating on a passed collection: intmax=0; // of List managing ints:
for (inti = 0; i < elements.Length; ++i) { for (int i = 0; i < this.Count; ++i) {
if (max < elementsi]) { . . if (max < this[i]) {
max = elementsi]; i = max = thisli];
}
} }
} }
}
» From algorithms to collections' methods:
- The cost of the static GetMax() depends on the input, more exactly, it depends on the count of elements in the passed int[]! Clear!

- To drive this point home for collections: let's assume GetMax() is a fictive meth f the type List.
- We can easily spot only one difference: GetMax() now operates on this, and no longer on a passed int]].
- The costs of most algorithms depend on the count of passed elements!

- The costs of most collection methods depend on the count of contained elements!

* In future lectures we'll discuss algorithms that are methods/member functions of collection types.
- E.g. methods like this[] (index access), Contains(), Insert(), Append(). Remove

27

27

Thank youl!

28

28

	Title of Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

